Compositional Vector Space Models for Improved Bug Localization

Shaowei Wang, David Lo, and Julia Lawall School of Information Systems, Singapore Management University

> 2018-4-29 Lottie Lu, @Computer Graphix Lab, University of Seoul

Contents

- Abstract
- Introduction
- Background
- Variants of the TF-IDF Weighting Scheme
- Search-Based Composition Engine
- AmaLgam
- Empirical Evaluation
- Related Work
- Conclusion and Future Work

IR techniques using for Bug Localization. **VSM** with standard TF-IDF, **outperform** nine IR techniques. But, **Multiple VSM variants** with different weighting schemes relative performance differs for different software systems.

We propose to compose various **VSM variants**, and a **GA based approach** to explore the space of possible compositions and then evaluated the approach on thousands of bug reports.

2.Background A: Bug Localization

 Bug Localization : Link a particular bug report to the files using information retrieval(IR) techniques, which is a textual document.

 Vector Space Model: (VSM), each document is represented as a vector of values. Each value in the vector represents the weight of a term in the document. Assign weights use the concepts of tf-idf.

Term frequency and Inverse document frequency (tf-idf).

• The standard tf-idf scheme assigns a weight to a term **t** in a document **d** according to the formula:

weight(t, d) = tf (t, d) \times idf (t,D)

Where t, d, D, tf (t, d), idf (t,D) correspond to a term, a document, a corpus (i.e., a set of documents), the frequency of t in d, and the inverse document frequency of t in D, respectively.

Search-based Algorithms

- Present a particular family of search-based algorithms: genetic algorithms (GA). A GA aims to maximize an objective function. Figure 1 shows the pseudocode of the one we use.
- The time complexity of our GA is given by:

 $O(N_I \times (N_C \times P_C \times O(cross) + N_C \times P_M \times O(mut) + O(sel)))$

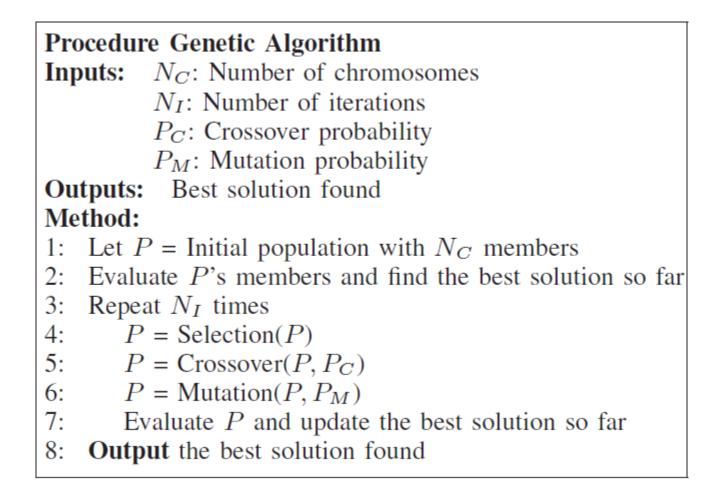


Fig. 1. Genetic Algorithm: Pseudocode

3. Variants of the TF-IDF Weighting Scheme Search-Based Composition Engine

- The tf-idf weight for a term in a document is the product of its term frequency score and its inverse document frequency score.
- Inverse document frequency: (idf) is a measure of whether a term is common or rare in the documents of a corpus.

• There are many variants of the standard tf-idf weighting scheme, depending on how the tf and idf are measured.

TABLE II. VARIANTS OF TF AND IDF

Term frequency					
$tf_n(t,d)$ (natural)	$ \{t t \in d\} $				
$tf_l(t,d)$ (logarithm)	$1 + \log(tf_n)$				
$tf_L(t,d)$ (Log ave)	$\frac{1 + \log(tf_n(t,d))}{1 + \log(ave_{t \in d}(tf_n(t,d)))}$				
$tf_a(t,d)$ (augmented)	$0.5 + \frac{0.5 \times tf_n(t,d)}{max_t(tf_n(t,d))}$				
$tf_b(t,d)$ (boolean)	$\begin{cases} 1 & \textit{if } t\!f_n(t,d) > 0 \\ 0 & \textit{otherwise} \end{cases}$				
Document frequency					
$idf_n(t,D)$ (no)	1				
$idf_l(t,D)$ (standard)	$log \frac{ D }{df_t}$				
$idf_r(t,D)$ (ratio)	$\max\{0, \log\frac{ D - df_t}{df_t}\}$				

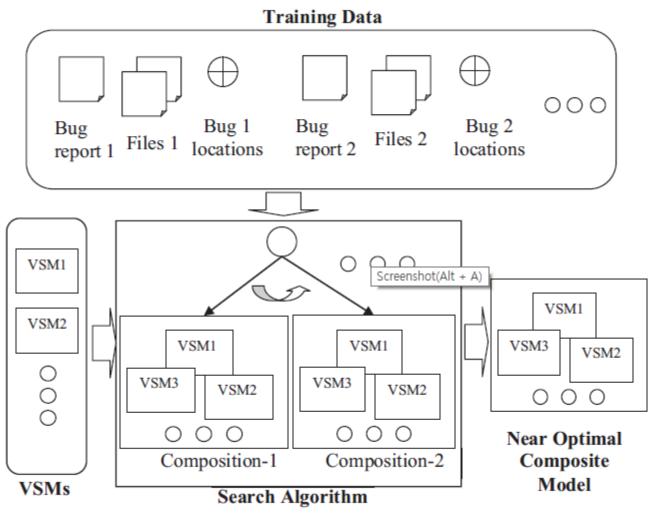
TABLE III.VARIANTS OF THE TF-IDF WEIGHTING SCHEME.THE TF AND IDF VARIANTS ARE DESCRIBED IN TABLE II.

Name	Equation
tf_n - idf_n	$tf_n(t,d) \times idf_n(t,D)$
tf_n - idf_l	$tf_n(t,d) \times idf_l(t,D)$
tf_n - idf_r	$tf_n(t,d) \times idf_r(t,D)$
tf_l - idf_n	$tf_l(t,d) \times idf_n(t,D)$
$tf_l - idf_l$	$tf_l(t,d) \times idf_l(t,D)$
tf_l -idf_r	$tf_l(t,d) \times idf_r(t,D)$
tf_L - idf_n	$tf_{L}(t,d) \times idf_{n}(t,D)$
tf_L - idf_l	$tf_{L}(t,d) \times idf_{l}(t,D)$
tf_L - idf_r	$tf_L(t,d) \times idf_r(t,D)$
tf_a - idf_n	$tf_{a}(t,d) \times idf_{n}(t,D)$
tf_a - idf_l	$tf_{a}(t,d) \times idf_{l}(t,D)$
tf_a - idf_r	$tf_{a}(t,d) \times idf_{r}(t,D)$
tf_b -idf_n	$tf_{b}(t,d) \times idf_{n}(t,D)$
tf_b - idf_l	$tf_b(t,d) \times idf_l(t,D)$
tf_b - idf_r	$tf_b(t,d) \times idf_r(t,D)$

4.Search-Based Composition Engine

- Our search-based bug localization process is composed of two phases:
- A. Training Phase
- B. Deployment Phase

The two phases are illustrated in Figure 2.



(a) Training Phase

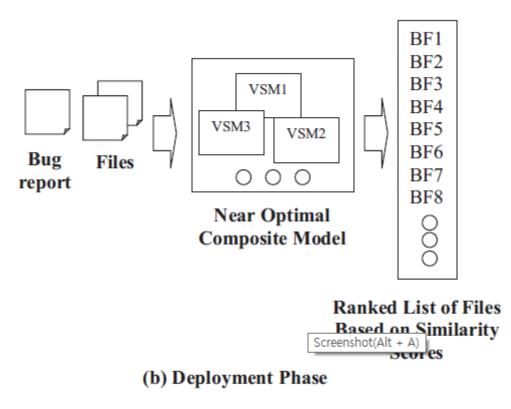


Fig. 2. Proposed Framework: Training and Deployment Phase

Objective Functions

- Search algorithms require an objective function to measure how good a candidate solution is. The goal of a genetic algorithm is to maximize the value of a given objective function.
- Before defining the objective function for GA, first introduce two evaluation metrics that are commonly used to measure the effectiveness of bug localization techniques:

Mean Average Precision (MAP) 평균 정밀도

Mean Reciprocal Rank (MRR) 평균 상호 순위

• Mean Average Precision (MAP): MAP emphasizes all of the buggy files instead of only the first one. MAP is computed by taking the mean of the average precision scores across all bug reports.

$$AP = \sum_{k=1}^{M} \frac{P(k) \times pos(k)}{\# buggy \ files},$$

 Mean Reciprocal Rank (MRR): The reciprocal rank for a bug report is the reciprocal of the position of the first buggy file in the returned ranked files.
 MRR is the mean of the reciprocal ranks over a set of bug reports Q

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

5-A. AmaLgam

- AmaLgam which is a state-of-art bug localization approach incorporating three components to localize bugs in systems: version history, structure, and similar bug reports:
 - Version history component: Input commit logs collected from the version control system and outputs a list of files with their suspiciousness scores. score_H(b, f)
 - **Structure component**: Input the source code corpus and a given bug report and returns a list of files with their suspiciousness scores. *scores(b, f)*
 - Similar report component: considers historical bug reports that have already been fixed. score_R(b, f,B)

5-B. Compositional Model: AmaLgamcomposite

- Present one strategy for combining our compositional VSM with AmaLgam.
- We combine the VSM models with different tf-idf weighting schemes, and three components of AmaLgam as follows.
- Given a bug **report b** and a set of historical fixed bug **reports B**, we compute the suspiciousness score M_{Composite} (b, f) of file f as follows:

$$\sum_{i=1}^{15} w_i \times VSM_i(b, f) + \sum_{J}^{J \in H, R, S} w_j \times score|_J(b, f)$$

6.Empirical Evaluation

A. Experimental Setting

• 1) Datasets: We use three datasets containing a total of 3,459 bug reports from three popular **open source projects**, AspectJ, Eclipse, and SWT.

TABLE IV. DATASET DETAILS							
Project	Description	Period	#Fixed	#Source			
			Bugs	Files			
AspectJ	Aspect-oriented	07/2002-	286	6485			
	extension of Java	10/2010					
Eclipse	Open source IDE	10/2004-	3075	12863			
		03/2011					
SWT	Open source wid-	10/2004-	98	484			
	get toolkit	04/2010					

A. Experimental Setting

- 2) Effectiveness Calculation: We use the components of our objective function, MAP and MRR, to evaluate the effectiveness of our solution. We also use Hit@N.
- **Hit@N**: This metric calculates the number of bug reports where one of its buggy files appears in the top N ranked files. Given a bug report, if at least one of its relevant files is in the top N ranked files, we consider the report is successfully located.

- VSMnatural: VSM with the standard tf-idf weighting scheme
- VSMcomposite: Standard tf-idf weighting scheme combining our compositional VSM

- AmaLgam_{composite}: Combined the 15 VSMs with the 3 components of AmaLgam
- AmaLgamnatural: Natural AmaLgam

TABLE V. PERFORMANCE COMPARISONS. AmaL = AmaLgam. $AmaL_{compo.} = AmaLgam_{composite}$.

Project	Approach	Hit@1	Hit@5	Hit@10	MAP	MRR
AspectJ	$VSM_{natural}$	25 (8.7%)	43 (15.0%)	65 (22.3%)	0.05	0.13
	VSM_{compo} .	33 (11.5%)	55 (19.2%)	67 (23.4%)	0.07	0.16
	AmaL	127 (44.4%)	187 (65.4%)	209 (73.1%)	0.33	0.54
	$AmaL_{compo.}$	145 (50.7%)	211 (73.8%)	227 (79.4%)	0.43	0.61
Eclipse	$VSM_{natural}$	116 (3.8%)	456 (14.8%)	709 (23.1%)	0.01	0.01
Ecupse	VSM_{compo} .	116 (3.8%)	544 (17.7%)	845 (27.5%)	0.01	0.01
	AmaL	1060 (34.5%)	1775 (57.7%)	2059 (67.0%)	0.35	0.45
	$AmaL_{compo.}$	1108~(36.1%)	1905 (62.0%)	2187 (71.2%)	0.39	0.48
SWT	$VSM_{natural}$	12(50.7%)	37 (73.8%)	49 (79.4%)	0.21	0.24
	VSM_{compo} .	14 (50.7%)	40 (73.8%)	53 (79.4%)	0.23	0.26
	AmaL	61 (62.2%)	80 (81.6%)	88 (89.8%)	0.62	0.71
	$AmaL_{compo.}$	62 (63.2%)	83 (82.6%)	88 (89.8%)	0.63	0.71

Conclusion

- In this paper, we build a solution that combines 15 VSMs with different tf-idf weighting schemes into an improved **composite model**, constructed using a **genetic algorithm**.
- We have evaluated our approach on 3,459 bug reports from AspectJ, Eclipse, and SWT and demonstrate that our approach can achieve better performance. Compared with VSMnatural, averaging across the 3 datasets, our approach, VSMcomposite, improves VSMnatural in terms of Hit@5, MAP, and MRR by 18.4%, 20.6%, and 10.5% respectively.
- We have also combined the 15 VSMs with the 3 components of AmaLgam, which is the state-of-the-art bug localization technique. Compared with AmaLgam, averaging across the 3 datasets, AmaLgam_{composite} can **improve** AmaLgam in terms of Hit@5, MAP, and MRR by 8.0%, 14.4% and 6.5% respectively.

THANK YOU

