Shaowei Wang, David Lo, and Julia Lawall

School of Information Systems, Singapore
Management University

2018-4-29
Lottie Lu, @Computer Graphix Lab, University of Seoul

 Abstract

* Introduction

« Background

 Variants of the TF-IDF Weighting Scheme
« Search-Based Composition Engine

« AmalLgam

« Empirical Evaluation

« Related Work

e Conclusion and Future Work

IR techniques using for Bug Localization. VSM with standard TF-IDF,
outperform nine IR techniques. But, Multiple VSM variants with different
weighting schemes relative performance differs for different software systems.

We propose to compose various VSM variants, and a GA based approach to
explore the space of possible compositions and then evaluated the approach on

thousands of bug reports.

A: Bug Localization

 Bug Localization : Link a particular bug report to the files using

Information retrieval(IR) techniques, which is a textual document.

* Vector Space Model: (VSM), each document is represented as a vector
of values. Each value in the vector represents the weight of a term in the
document. Assign weights use the concepts of tf-idf.

* The standard tf-idf scheme assigns a weight to a term t in a document d

according to the formula:

weight(t, d) = tf (t, d) X idf (t,D)

Where t, d, D, tf (t, d), idf (t,D) correspond to a term, a document, a corpus (i.e., a set of
documents), the frequency of t in d, and the inverse document frequency of t in D,

respectively.

* Present a particular family of search-based algorithms: genetic algorithms
(GA). A GA aims to maximize an objective function. Figure 1 shows the

pseudocode of the one we use.
* The time complexity of our GA is given by:

O(Ni X (Nc X Pc X O(cross) + Nc X Pm X O(mut) + O(sel)))

Procedure Genetic Algorithm
Inputs: Ng: Number of chromosomes
Nr: Number of iterations
Pc: Crossover probability
Ppr: Mutation probability
Outputs: Best solution found
Method:
[: Let P = Initial population with N& members
2: Evaluate P’s members and find the best solution so far
3: Repeat Ny times
4 P = Selection(P)
5: P = Crossover(P, P¢)
6: P = Mutation(P, Par)
7 Evaluate P and update the best solution so far
8: Output the best solution found

Fig. 1. Genetic Algorithm: Pseudocode

* The tf-idf weight for a term in a document is the product of its term

frequency score and its inverse document frequency score.

* Inverse document frequency: (idf) is a measure of whether a term is

common or rare in the documents of a corpus.

 There are many variants of the standard tf-idf weighting scheme,

depending on how the tf and idf are measured.

TABLE III. VARIANTS OF THE TF-IDF WEIGHTING SCHEME.

TABLE IL VARIANTS OF TF AND IDF
THE TF AND IDF VARIANTS ARE DESCRIBED IN TABLE II.

Term frequency i i
= Name Equation

tf 5, (£, d) (natural) {t]t € d}| if . idf. | tf, (t.d) x idf . (t, D)
tf,(t,d) (logarithm) 1+ log(tf,,) tf n-1df tf, (t,d) x idf,(t, D)
av 1+log(tfn(t.d)) tfn_idfr tfn(t* d} X idf?(t? D)
tf (¢, d) (Log ave) Tilog(avesca (T (LD t1-idf, | 1(t:d) X idf, (£, D)

o = S X tf 5 (2, tf-id tf,(t,d) x udf,(t, D

tf ,(t,d) (augmented) 0.5 + mams (i (d)) éi:d}ci tﬁ%t, d% < :Edi((t, D))
, 1 if tf,(t,d) >0 if p-idf, | 1 (t,d) X idf (L, D)
tfy(t, d) (boolean) {0 i erise tf -idf, | tf,(t,d) x idf,(t, D)
th'idf'r th(tr d';} X idf’r(tv D)
Document frequency tf ,-idf,, | tf,(t,d) x idf (¢, D)
Edf (f,D) [Ilﬂ') 1 tfﬂ—idfl tfﬂ(t,d) ot Idfi(tD)
] o |D| tfﬂ'idfr tfﬂ(twd) X idfr(tw D}
idf (1, D) (standard) log-z= if ,idf, | tf, (L, d) x idf, (£, D)
. :] [D[—df¢ tf . -1df tfy(t,d) x idf,(t, D)
idf ,.(t, D) (ratio) max{0.,log a7 } tf:-z'dfi th(t,d) = idfi_(t, D)

e Our search-based bug localization process is composed of two phases:
« A. Training Phase

* B. Deployment Phase

The two phases are illustrated in Figure 2.

Training Data

/ N

L T e

Bug ‘ Bug 1 Bug : Bug 2
report 1 Files 1 1ocations report 2 Files 2 locations

- /
J L

'd ™y
VSMI 0
O | Screenshot{Alt + A)
Ny
WVEMI
VSM2
VSMI VSMI VSM3 [T vsao
O w2 w2 0 00
O
© OO0 © OO0 Near Optimal
. Composition-1 Composition-2 Composite
VSMs Model

Search Algorithm
(a) Training Phase

2

BF1
BF2
VSMI BEF3
BF4
WVEM3 VSM2 BF5
. BF6
Bug Files
report ONONO BF7
BF§
Near Optimal O
Composite Model O
O
Ranked List of Files
Rased an Similarity
ScreenshotiAlt + A) .
(b) Deployment Phase

Proposed Framework: Training and Deployment Phase

« Search algorithms require an objective function to measure how good a
candidate solution is. The goal of a genetic algorithm is to maximize the

value of a given objective function.

» Before defining the objective function for GA, first introduce two evaluation
metrics that are commonly used to measure the effectiveness of bug

localization techniques:

« Mean Average Precision (MAP): MAP emphasizes all of the buggy files
Instead of only the first one. MAP is computed by taking the mean of the

average precision scores across all bug reports.

Moo -

\ P JII.' | ¥ POs JILT:I
AP = Z [F) X P -;[})

Ly 7 uggy files

 Mean Reciprocal Rank (MRR): The reciprocal rank for a bug report is the
reciprocal of the position of the first buggy file in the returned ranked files.

MRR is the mean of the reciprocal ranks over a set of bug reports Q

Q
1 ol 1
J_{RR — ? Z ran]{f?

« AmalLgam which is a state-of-art bug localization approach incorporating
three components to localize bugs in systems: version history, structure,
and similar bug reports:

« Version history component: Input commit logs collected from the version control

system and outputs a list of files with their suspiciousness scores.

« Structure component: Input the source code corpus and a given bug report and

returns a list of files with their suspiciousness scores.

« Similar report component: considers historical bug reports that have already been

fixed.

5-B.

Compositional Model: Amalgamcomposite

JEH,R,S

15
D_wix VSMi(b.)+ 3 w; x scores (b, f)
i=1

J

6.Empirical Evaluation

A. Experimental Setting

TABLE 1IV. DATASET DETAILS

Description Period #Fixed #source
Aspect] Aspect-oriented 07/2002- | 286 6485
| e | o |

Eclipse Open source IDE | 10/2004- | 3075 12863
[| [
SWT Open source wid- | 10/2004-
e

« 2) Effectiveness Calculation: We use the components of our objective
function, MAP and MRR, to evaluate the effectiveness of our solution. We
also use Hit@N.

« Hit@N: This metric calculates the number of bug reports where one of its
buggy files appears in the top N ranked files. Given a bug report, if at least
one of its relevant files is in the top N ranked files, we consider the report

IS successfully located.

e VSMnatural: VSM with the standard tf-idf weighting scheme

* VSMcomposite: Standard tf-idf weighting scheme combining our

compositional VSM

« Amalgamecomposite: Combined the 15 VSMs with the 3 components of

Amalgam

 AmalLgamnawra: Natural AmalLgam

TABLE V.

Amﬂ.LEﬂmPﬂ. = AmﬂngﬂlmﬂﬂmpﬂsitE-

PERFORMANCE COMPARISONS. Amal = AmalLgam.

Project | Approach Hit@1 Hit@5 Hit@ 10 MAFP | MRR
Aspect] VSEM, iurar |23 (8.7%) 43 (15.0%) |65 (22.3%) |0.05 |0.13
VSMompe., |33 (11.5%) [35 (19.2%) |67 (23.4%) |0.07 [0.16
AmalL 127 (44.4%) 187 (65.4%) (209 (73.1%) |0.33 |0.54
Amal ,mpe. | 145 (30.7%) | 211 (73.8%) (227 (79.4%) |0.43 |0.61
Eclipse VSMuaturar |1 15 (3.8%) |456 (14.8%) 709 (23.1%) [0.01 [0.01
VSMompe., | 116 (3.8%) |54 (17.7%) |[845 (27.5%) (0.01 [0.0]
AmalL 1060 (34.5%) | 1775 (57.7%) (2059 (67.0%) |0.35 |0.45
Amal ompe. | 1108 (36.1%) | 1905 (62.0%) (2187 (T1.2%) [0.39 |0.48
SWT VESMpaturar | 120 50.7%) |37 (73.8%) |49 (79.4%) |[0.21 D.E:t_
VEMcompe. |14 (30.7%) (40 (73.8%) |33 (79.4%) |0.23 [0.26
AmalL 61 (62.2%) |80 (81.6%) |88 (89.8%) [(0.62 [0.71
Amal ompe. |62 (63.27) |83 (82.6%) |88 (89.8%) |[0.63 [0.71

Conclusion

* In this paper, we build a solution that combines 15 VSMs with different tf-idf weighting

schemes into an improved composite model, constructed using a genetic algorithm.

* We have evaluated our approach on 3,459 bug reports from Aspectd, Eclipse, and SWT
and demonstrate that our approach can achieve better performance. Compared with
VSMnatural, averaging across the 3 datasets, our approach, VSMcomposite, improves
VSMnatural In terms of Hit@5, MAP, and MRR by 18.4%, 20.6%, and 10.5% respectively.

 We have also combined the 15 VSMs with the 3 components of AmalLgam, which is the
state-of-the-art bug localization technique. Compared with AmalLgam, averaging across
the 3 datasets, Amal.gamcomposite can improve AmalLgam in terms of Hit@5, MAP, and
MRR by 8.0%, 14.4% and 6.5% respectively.

